Some Enzymes and Properties of the Reductive Carboxylic Acid Cycle Are Present in the Green Alga Chlamydomonas reinhardtii F-60.
نویسندگان
چکیده
The reductive carboxylic acid cycle, the autotrophic pathway of CO(2) assimilation in prokaryotes (photosynthetic and nonphotosynthetic autotrophic bacteria), was investigated in Chlamydomonas reinhardtii F-60, an algal mutant lacking a complete photosynthetic carbon reduction pathway (C(3)) due to a deficiency in phosphoribulokinase. Evidence was obtained consistent with the presence of the reductive carboxylic acid cycle in F-60. This conclusion is based on the fact that: (a) acetate approximately doubled CO(2) fixation in whole cells (4 micromoles per milligram chlorophyll per hour) and in chloroplasts (32 nanomoles per milligram chlorophyll per hour); and (b) pyruvate synthase, alpha-ketoglutarate synthase, and ATP-citrate lyase, three indicators of the cycle, were found in cell-free extracts.
منابع مشابه
CHLOROPLAST STRUCTURE AND FUNCTION IN ac-20, A MUTANT STRAIN OF CHLAMYDOMONAS REINHARDI
A mutant strain of the green alga Chlamydomonas reinhardi, ac-20, is described in which both the rate of CO(2) fixation by whole cells and the rate of carboxylation of ribulose-1,5-diphosphate in cell-free extracts are reduced, particularly when sodium acetate is present in the growth medium. Of the enzymes of the reductive pentose phosphate cycle tested, only ribulose-1,5-diphosphate carboxyla...
متن کاملBiosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes
Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...
متن کاملCharacterization of a Photosynthetic Mutant Strain of Chlamydomonas reinhardi Deficient in Phosphoribulokinase Activity.
A mutant strain of the unicellular green alga, Chlamydomonas reinhardi, is unable to fix carbon dioxide by photosynthesis because it is deficient in phosphoribulokinase activity. The absence of light-dependent carbon dioxide fixation in cells of the mutant strain supports the operation of the Calvin-Benson scheme of photosynthetic carbon dioxide fixation in this organism. No deficiency other th...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملPhototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii.
Blue light as an environmental cue plays a pivotal role in controlling the progression of the sexual life cycle in the green alga Chlamydomonas reinhardtii. Phototropin was considered a prime candidate for the blue-light receptor involved. By using the RNA interference method, knockdown strains with reduced phototropin levels were isolated. Those with severely reduced levels of this photorecept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 98 2 شماره
صفحات -
تاریخ انتشار 1992